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a b s t r a c t

Computer aided diagnosis (CAD) systems using functional and structural imaging techniques enable
physicians to detect early stages of the Alzheimer's disease (AD). For this purpose, magnetic resonance
imaging (MRI) have been proved to be very useful in the assessment of pathological tissues in AD. This
paper presents a new CAD system that allows the early AD diagnosis using tissue-segmented brain
images. The proposed methodology aims to discriminate between AD, mild cognitive impairment (MCI)
and elderly normal control (NC) subjects and is based on several multivariate approaches, such as partial
least squares (PLS) and principal component analysis (PCA). In this study, 188 AD patients, 401 MCI
patients and 229 control subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
were studied. Automated brain tissue segmentation was performed for each image obtaining gray matter
(GM) and white matter (WM) tissue distributions. The validity of the analyzed methods was tested on the
ADNI database by implementing support vector machine classifiers with linear or radial basis function (RBF)
kernels to distinguish between normal subjects and AD patients. The performance of our methodology is
validated using k-fold cross technique where the system based on PLS feature extraction and linear SVM
classifier outperformed the PCA method. In addition, PLS feature extraction is found to be more effective for
extracting discriminative information from the data. In this regard, the developed latter CAD system yielded
maximum sensitivity, specificity and accuracy values of 85.11%, 91.27% and 88.49%, respectively.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Alzheimer's Disease (AD) is one of the most common forms of
neurodegenerative brain disorders. This form of dementia is char-
acterized by neurofibrillary tangles, amyloid plaques and histopatho-
logic changes that are usually associated with neuronal loss and brain
volume reductions [1]. This disease begins slowly, starting with
memory loss and other cognitive functions getting worse until
patients lose their ability to recognize very familiar things or persons.
Furthermore, the occurrence and dominance of this disease will

increase, in the coming years [2], due to the growth of the older
population in developed nations. In addition, it is considered to be
one of the major causes of death around the globe. Deaths from heart
disease have decreased by 16%, breast cancer by 2%, prostate cancer
by 8% and stroke by 23% whereas deaths by AD increased by 68%
since year 2000 [3]. Up to now, the pathogenesis and pathologies of
AD is unknown. In addition, there is still no special treatment for AD,
hence early diagnosis becomes an important way to improve AD
survival rate. To clinically diagnose AD at an early stage [4,5], many
biomedical imaging techniques have been used, such as Magnetic
Resonance Imaging (MRI) [6,7]. The MRI [6,7] scan is a type of test
that has been widely used for early detection and diagnosis of AD
[4,5,8–11]. This imaging technique produces high quality images of
the anatomical structures for the human body, specifically in the
brain, and provides rich information for clinical diagnosis and
biomedical research [12,13]. The early changes are reliable with the
underlying pathology of AD. However, it is unclear which structures
are most useful for early diagnosis because the pattern of AD
pathology is complex and evolves as the disease progresses [4].
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Many studies have used manual delineation (segmentation) of the
hippocampus in MR images [14–19]. These studies have demon-
strated a high accuracy in distinguishing between AD patients and
normal controls. Automatic methods of measuring hippocampal
volumes have also been applied with similar results [20,21]. Entorh-
inal cortex measures have additionally been used to discriminate
between subjects with AD and normal controls [15,16].Hippocampal
volumes and entorhinal cortex measures have been found to be
equally accurate in distinguishing between AD and normal cognitive
elderly subjects [22]. It is probable that a single structure such as the
hippocampus is not sufficient for accurate diagnosis of the disease
and the combination of different structures has proven to be more
useful when distinguishing AD patients from cognitively normal
elderly subject [23]. Therefore, multivariate approaches give the
opportunity to analyze many variables at the same time and observe
the intrinsic patterns of the complex data from different regions of
the brain. Previous studies have utilized different techniques of
multivariate approaches such a Principal Component Analysis
(PCA), Partial Least Square (PLS) and support vector machine (SVM)
to analyze MRI data. In this work, we have used the PLS and PCA
methods for analyzing our database. The aim of our study was to
compare different feature extraction methods for classification of
patients with AD, MCI and NC based on MRI segmented data (GM,
WM and (GMþWM)).

Furthermore, in the last years many researches have developed
Computer Aided Diagnosis (CAD) systems that combine medical
images of the brain and methods from Statistical Machine Learning
[24–27] in order to automatically diagnose AD. In this way, several
approaches for a CAD system based on functional and structural
images have been proposed. A large number of these CAD systems for
AD are composed of three steps: (i) preprocessing procedure, (ii)
feature extraction algorithm, and (iii) classification. The first step
ensures that different images from different subjects, with brains of
different size and shape, are comparable. The feature extraction
algorithm transforms the input data into small vectors in order to
avoid the small sample size problem [28]. These vectors must include
all the relevant information contained in the input data. Once it has
been trained, the classifier determines if they are more similar to
healthy subject vectors, to MCI patient vectors or to AD patient vectors,
thus performing the diagnosis. In our case, this paper describes a CAD
system for AD based on PLS and PCA feature extraction methods to
detect early stages of the Alzheimer's disease (AD).

This paper is organized as follows. In Section 2 the database
used to test the system, preprocessing technique, voxel selection,
feature extraction methods, description of proposed methodology
and classification methods used in this paper are presented. In
Section 3 we propose some experiments, and different results
obtained with each combination are detailed. Discussion is given
in Section 4 in order to analyze the experimental results obtained
in this work, and the conclusions are presented in the last section.

2. Materials and methods

2.1. ADNI database

Data used in preparation of this paper were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Adminis-
tration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer's disease (AD).
Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California San Francisco.
ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 subjects but
ADNI has been followed by ADNI-GO and ADNI-2. To date these
three protocols have recruited over 1500 adults, ages 55–90, to
participate in the research, consisting of cognitively normal older
individuals, people with early or late MCI, and people with early AD.
The follow up duration of each group is specified in the protocols
for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for
ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For
up-to-date information, see www.adni-info.org.

The ADNI database contains 1.5 T and 3.0 T t1w MRI scans for
AD, MCI, and cognitively normal controls (NC) at several time
points. In addition, all structural MR scans used in this paper were
acquired at 1.5 T MRI scanner and this database provides data for
three groups of patients: healthy patients (Normal Controls, NC),
Alzheimer disease patients (AD) and patients with mild cognitive
symptoms (MCI). The database used in this work contains 1075
T1-weighted MRI images, comprising 229 NC, 401 MCI (312 stable
MCI and 86 progressive MCI) and 188 AD. As only the first exam
for each patient has been used in this work, 818 images were used
for assessing the proposed approach. Demographic data of
patients in the database is summarized in Table 1.

All subjects must be willing and able to undergo all test procedures
including neuroimaging and agree to longitudinal follow-up. Specific
psychoactive medications were excluded. General inclusion/exclusion
criteria are as follows:

1. Normal control subjects: Mini-Mental State Examination
(MMSE) (Folstein) scores between 24 and 30 (inclusive), a Clinical
Dementia Rating (CDR) of 0, non-depressed, non-MCI, and non-
demented. The age range of normal subjects was roughly matched
to that of MCI and AD subjects. Therefore, there should be minimal
enrollment of normals under the age of 70.

2. MCI subjects: MMSE scores between 24 and 30 (inclusive), a
memory complaint, objective memory loss measured by education
adjusted scores on Wechsler Memory Scale Logical Memory II, a
CDR of 0.5, absence of significant levels of impairment in other
cognitive domains, essentially preserved activities of daily living,
and an absence of dementia.

3. Mild AD subjects: MMSE scores between 20 and 26 (inclu-
sive), CDR of 0.5 or 1.0, and meeting NINCDS/ADRDA [29] criteria
for probable AD.

2.2. Image preprocessing

MRI images from the ADNI database were preprocessed and
segmented using the Statistical Parametric Mapping (SPM)

Table 1
Demographic data of patients in the database (ADNI 1075-T1).

Diagnosis Number Age Gender (M/F) MMSE

NC 229 75.9775.0 119/110 29.0071.0
MCI 401 74.8577.4 258/143 27.0171.8
AD 188 75.3677.5 99/89 23.2872.0
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software [30]. SPM was initially designed for functional images,
but it also provides routines for realignment, smoothing and
spatial normalization into a standard space of T1-weighted
images. Moreover, the template from the VBF package [31] was
used for this purpose. It is worth mentioning that normalization
routines preserve the amount of tissues and not the intensities
[30]. Thus, images from ADNI database were resized to
121�145�121 voxels with voxel sizes of 1.5 mm (sagital)
�1.5 mm (coronal) �1.5 mm (axial). The segmentation per-
formed by SPM provides probability maps for GM and WM,
considering in values in the range (0,1) for each voxel, related to
its membership probability.

2.3. Feature extraction methods

Some dimension reduction techniques were applied to reduce
the information contained in the brain images. In this sense, this

section describes the methods for feature extraction used in
this paper.

2.3.1. Feature extraction based on principal component analysis
Principal component analysis (PCA) [32,33] has been called one

of the most important and valuable results from applied linear
algebra (linear transformation). PCA is used frequently in all forms
of analysis because it is an efficient tool for extracting the most
significant features from a dataset. It is often used in neuroimaging
in order to reduce the original high dimensional space of the brain
images to a lower dimensional subspace [34,35]. Furthermore, it
has been successfully applied in neuroimage classification pro-
blems [33,36].

Mathematically, PCA generates an orthonormal basis vector
that maximizes the scatter of all the projected samples. After the
preprocessing steps, the n remaining voxels for each subject are
rearranged into a vector form. Let X¼ ½x1; x2…; xN� be the sample

Fig. 1. The first four Eigenbrains extracted from an MRI reference image (gray level). They represent the principal components where original images will be projected onto
to obtain a dimension reduction: (a) First eigenbrain; (b) second eigenbrain; (c) third eigenbrain; and (d) fourth eigenbrain.
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set of these vectors, where N is the number of patients. After
normalizing the vectors to unity norm and subtracting the large
average, a new vector set Y¼ ½y1; y2…; yN� is obtained, where each
yi represents an n-dimensional normalized vector, yi ¼ ðyi1; yi2
…; yinÞt ; i¼ 1;2;…;N. The covariance matrix of the normalized
vectors set is defined as:

ΣY ¼
1
N

∑
N

n ¼ 1
yiy

t
i ¼

1
N
YYt ð1Þ

and the eigenvector and eigenvalue matrices Φ, Λ are computed
as

ΣYΦ¼ΦΛ ð2Þ
Note that YYt is an n�n matrix while YtY is an N�N matrix. If the
sample size N is much smaller than the dimensionality n, then
diagonalizing YtY instead of YYt reduces the computational com-
plexity [15].

ðYtYÞΨ¼ΨΛ1 ð3Þ

T¼ YΨ ð4Þ
where Λ1 ¼ diagfλ1; λ2;…; λNg and T¼ ½Φ1;Φ2;…;ΦN �. Derived
from the eigenface concept [37], and due to its still brain-like
appearance, the eigenvectors or principal components (PCs)
Φi; i¼ 1;2;…;N of the covariance matrix are called eigenbrains
[38]. Fig. 1 shows the first four eigenbrains obtained with an MRI
reference image (gray level) by the PCA algorithm.

2.3.2. Feature extraction based on partial least squares
PLS [39,40] is a statistical method that models sets of observed

variables by means of latent variables. This method comprises
regression and classification tasks as well as dimension reduction
techniques and modeling tools. The objective general of PLS is to
maximize the covariance between different sets of variables. Both
the predictor (the observed variables) and predicted (response)
variables are considered as a block of variables. It finds a linear
regression model by projecting the predicted variables and the
observable variables to a new space. PLS can be used as a
regression tool or as a dimension reduction technique similar to
PCA [41,42]. Mathematically, PLS is a linear algorithm that models
the relation between two data sets: the observed variables X �RN

(representing the feature space of input) and Y �RM (representing
the labels). After observing n data samples from each block of
variables, PLS decomposes the n�N matrix of zero mean variables
X and the n�M matrix of zero mean variables Y into the
regression models form [40,43]:

X¼ TPT þE ð5Þ

Y¼UQ T þF ð6Þ
where T and U are n� p matrices of the p extracted score vectors
(components, latent vectors), the N� p matrix P and the M� p
matrix Q represent matrices of loadings with number of columns
being the number of PLS components and n�N matrix E and n�M
matrix F are the matrices of residuals (or error matrices). The
x-score in T are linear combinations of the x-variables, similarly, the
y-score in U are linear combinations of the y-variables. The model
structure of PLS and PCA is the same in the sense that the data are
first transformed into a set of a few intermediate linear latent
variables (components) and these new variables are taken into
account. The main difference between PLS and PCA is that the
former creates orthogonal weight vectors by maximizing the
covariance between the variables X and Y. Thus, PLS not only
considers the variance of the samples but also considers the class
labels [39].

Both, PCA and PLS decompose the data into two sets of
variables named scores and loadings. Thus, we can perform an
interesting analysis based on the concept of eigenbrains (similar to
the concept of eigenfaces [37] used in face recognition systems).
That way, loadings would be viewed as elementary brain images
and scores would represent the quantity of loadings used for
building a specific image. The PLS-based methodology maximizes
the covariance taking into account the labels information, thus the
PLS-brains contain the differences between the two classes. In
addition, most of the variance is gathered by the first components
and therefore, most of the differences are also gathered by the first
components. Fig. 2 shows the representation of the first four PLS-
brain obtained by the PLS algorithm. An implementation of the
PLS and PCA algorithms has been developed using Matlab Soft-
ware [44].

2.4. Support vector machines classifier

The support vector machine (SVM) is one of the most popular
supervised learning algorithms that been applied to neuroimaging
data in recent years [45–48]. SVM demonstrates good classifica-
tion performance, and is computationally efficient for training
with high dimensional data. Besides, SVM represents a set of
related supervised learning methods widely used in pattern
recognition, voice activity detection, classification and regression
analysis [49–52]. It is introduced in order to separate a set of
binary labeled training data with a hyperplane that is maximally
distant from the two classes (called maximal margin hyperplane).
The objective is to build a function f : RN-71 using training data,
that is, n-dimensional patterns xi and class labels yi, so that f will
correctly classify new examples (x,y):

ðx1; y1Þ; ðx2; y2Þ;……; ðxN; yNÞARN � 71 ð7Þ
Linear discriminant functions define decision hyperplanes in a

multidimensional space, that is:

gðxÞ ¼wTxþw0 ð8Þ
where w is the weight vector that is orthogonal to the decision
hyperplane and w0 is the threshold. The optimization task consists
of finding the unknown parameters wi; i¼ 1;2;…;N and w0 that
define the decision hyperplane. Let xi; i¼ 1;2;…;n be the feature
vectors of the training set, x. These belong to either of the two
classes, w1 or w2. If the classes were linearly separable, the
objective would be to design a hyperplane that classifies correctly
all the training vectors. The hyperplane is not unique, and the
selection process is focused on maximizing the generalization
performance of the classifier, that is, the ability of the classifier,
designed using the training set, to operate satisfactorily with new
data. Among the different design criteria, the maximal margin
hyperplane is usually selected since it leaves the maximum margin
of separation between the two classes. Since the distance from a
point x to the hyperplane is given by z¼ jg ðxÞj=JwJ , scaling w
and w0 so that the value of gðxÞ is þ1 for the nearest point in w1

and �1 for the nearest points in w2, reduces the optimization
problem to maximizing the margin: 2=JwJ with the constraints:

gðxÞ ¼wTxþw0Z1; 8xAw1 ð9Þ

gðxÞ ¼wTxþw0r1; 8xAw2 ð10Þ
When no linear separation of the training data is possible, SVM
can work effectively in combination with kernel techniques such
as quadratic, polynomial or radial basis function (RBF), so that the
hyperplane defining the SVM corresponds to a non-linear decision
boundary in the input space [53]. A kernel function is defined as

Kðxi; xjÞ ¼φðxiÞφðxjÞ ð11Þ
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The use of kernel functions avoids directly working in the high
dimensional feature space, thus the training algorithm only
depends on the data through dot products in Euclidean space,
i.e., on terms of the form φðxiÞφðxjÞ.

2.5. Automated classification of AD based on PLS and PCA methods
with SVM classifier

In this work, we present a new classification approach for AD
diagnosis which is based on segmented data (GM database and

WM database) and a voxel selection process. This process reduces
the input space dimensionality in order to address the small
sample size problem. Our developed CAD system is shown in
Fig. 3. Firstly, structural MRI images are normalized and segmen-
ted (preprocessing). Then, a different binary mask for each tissue
(GM and WM) is computed by averaging all the normal subject
tissue images. Only the voxels that have an intensity above 10% of
maximum intensity in the average image will be considered. This
step reduces the number of voxels in the input space. For example,
for data used in this work, the initial number of voxels per image

Fig. 3. Detailed schema of the proposed CAD system.

Fig. 2. Representation of the four PLS-brain of an MRI reference image (gray level) obtained by the PLS algorithm: (a) First PLSbrain; (b) second PLSbrain; (c) third PLSbrain;
and (d) fourth PLSbrain.
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(121�145�121¼2,122,945) is reduced to 382,325. Secondly, we
apply a PLS or PCA algorithm to compute score vectors for selected
voxels. These methods are efficient and robust, and have been
successfully used to model complex data [54] and, even, to deve-
lop CAD system for AD. Finally, these vectors are used as input for
a statistical classifier. In order to test this approach, we developed
a CAD system for AD using a Support Vector Machine (SVM) classi-
fier. It was used to estimate the underlying class (NC, MCI or AD)
of each subject. The performance of this system was estimated
through a k-fold cross-validation strategy.

3. Experiments and results

In this paper, a CAD system has been developed using two feature
extraction methods and different SVM classifiers. Several performance
metrics are estimated by using cross-validation. Apart from the well-
known accuracy rate of a classification procedure, which computes
the proportion between correctly classified samples and total samples,
sensitivity and specificity are the most widely used parameters to
describe a diagnosis test. The accuracy (Acc), sensitivity (Sens) and

specificity (Spec) rates are defined as follows:

Acc¼ TPþTN
TPþTNþTNþFP

; Sens¼ TP
TPþFN

; Spec¼ TN
TNþFP

ð12Þ

where TP is the number of true positives: number of AD patients
correctly classified; TN is the number of true negatives: number
of control subjects correctly classified; FP is the number of false
positives: number of control subjects classified as AD patients; FN is
the number of false negatives: number of AD patients classified as
control subjects. Sensitivity and specificity are used to measure the
proportion of actual positives or negatives which are identified
correctly (e.g. the percentage of AD patients, or normal controls
who are identified as such). These measures reveal the ability of a
system to detect AD, MCI and NC patterns. Performance metrics
are calculated using two cross-validation methods: k-fold cross-
validation and Leave-One-Out validation [55,56]. k-fold has been
used to assess the discriminative accuracy of different multivariate
analysis methods applied to the discrimination of frontotemporal
dementia from AD [25] and in classifying atrophy patterns based on
MRI data [26]. It considers k randomly selected sets of AD patients,
MCI and NC. It iteratively holds out a set for testing purposes,
and train the classifier with the remaining sets, so that each set is

Table 2
Statical measures of performances of the multivariate approach (PLS and PCA) for group 1 (NC vs AD), using 8 components for both features extraction techniques and two
classifiers (SVM linear and RBF) with k¼10.

PLS PCA

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

GM 87.53 88.65 86.17 85.61 89.08 81.38 SVM lin
WM 85.61 87.34 83.51 81.77 84.28 78.72
(GMþWM) 88.49 91.27 85.11 87.77 89.96 85.11

GM 87.29 87.77 86.70 83.93 86.26 81.38 SVM RBF
WM 84.41 85.59 82.98 81.29 83.41 78.72
(GMþWM) 88.49 90.39 86.17 87.53 90.39 84.04

Table 3
Statical measures of performances of the multivariate approach (PLS and PCA) for group 2 (NC vs MCI) using 8 components for both features extraction techniques and two
classifiers (SVM linear and RBF) with k¼10.

PLS PCA

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

GM 77.57 76.76 71.90 75.41 78.38 72.43 SVM lin
WM 80.54 79.46 81.62 75.14 77.3 72.98
(GMþWM) 81.89 82.16 81.62 78.92 80 77.84

GM 76.22 81.62 70.81 72.97 75.68 70.27 SVM RBF
WM 81.35 76.22 80.54 72.70 64.86 80.54
(GMþWM) 80.27 73.51 82.70 73.24 71.89 74.59

Table 4
Statical measures of performances of the multivariate approach (PLS and PCA) for group 3 (MCI vs AD), using 8 components for both feature extraction techniques and two
classifiers(SVM linear and RBF) with k¼10.

PLS PCA

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

GM 77.03 74.59 79.46 72.70 72.43 72.97 SVM lin
WM 87.03 88.65 85.41 79.19 82.16 76.22
(GMþWM) 85.41 87.03 83.78 81.89 84.86 78.92

GM 76.22 74.59 77.84 71.08 71.89 70.27 SVM RBF
WM 85.95 85.41 86.49 74.86 74.05 75.68
(GMþWM) 85.41 85.95 84.86 76.77 74.59 78.92
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left out once. This is repeated for all the k sets, and an average value
of the evaluation parameters is computed. Leave-One-Out is a
particular case of k-fold, in which only one image is selected as
test image.

In this work, two feature extraction methods (PCA and PLS) and
two SVM classifiers (using linear or RBF kernel) were evaluated in
order to develop more accurate CAD system for AD. Since our
purpose is to distinguish between healthy subjects, MCI and AD
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Fig. 4. SVM classification: Values of Accuracy (%) computed for ADNI database in function of number of component for features extraction techniques PLS (left) and PCA
(right): (a) and (b) are the results of group 1, (c) and (d) are the results of group 2, and (e) and (f) are the results of group 3.
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patients, firstly, we trained the CAD system with only normal
controls and AD images (group 1). Secondly, we have tested our
system using MCI and AD images (group 2) and finally we have
trained the CAD system with MCI and AD images (group 3).
Tables 2, 3 and 4 show the statistical measures obtained using
PLS and PCA methods. Also, performance of these feature extrac-
tion methods was calculated by means of k-fold cross-validation
with a number of folds equal to 10 (k¼10).

3.1. Classification results for group 1 (NC vs. AD)

In this section we present the classification results obtained in
the first experiment, which consisted on distinguishing between
NC and AD subjects. In this group, we test our method with all the
database (229 NC, 401 MCI and 188 AD). Table 2 shows the values
of the accuracy, sensitivity and specificity for the different brain
tissues and compares different feature extraction methods and
SVM classifiers. Linear SVM yielded higher accuracy rates for both
PLS and PCA methods than RBF. Furthermore, when we compare
the results obtained from PLS and PCA, we find that PLS feature
extraction and linear kernel SVM yielded the best accuracy rates.
Combining features extracted from GM and WM segmentation
reported a classification accuracy of 88.49% for PLS and linear SVM
(sensitivity¼91.27% and specificity¼85.11%) compared to 87.53%
for GM only (sensitivity¼88.65% and specificity¼86.17%) and
85.61% for WM only (sensitivity¼87.34% and specificity¼83.51%).
As a conclusion, combining features extracted from both GM and
WM tissue distributions increases the classification and accuracy
of the classifier.

3.2. Classification results for group 2 (NC vs. MCI)

The most difficult classification task concerning the ADNI
database is to distinguish between NC and MCI patients, due to
the wide range spanned by the features extracted from MCI
patients. In this group, we have used only 370 MRI images (185
NC and 185 MCI subjects) from the ADNI database described in
Section 2.1. Using PLS and linear SVM, the combination of features
extracted from GM and WM segmentation provided the highest
accuracy, 81.89% (sensitivity¼82.16% and specificity¼81.62%),
whereas the features extracted from GM or WM alone reported
a classification accuracy of 77.57% and 80.54% respectively. Overall,
we note that combining features extracted from both GM and WM

tissue yielded the highest accuracy value. All results related to this
classification model are reported in Table 3.

3.3. Classification results for group 3 (MCI vs. AD)

Table 4 shows the classification results obtained in the last
experiment, which consisted on distinguishing between MCI and
AD subjects using different SVM classifiers. Also, in this group
we have used the same number of images as group 2. Combining
features extracted from GM and WM segmentation reported
a classification accuracy of 85.41% for PLS and linear SVM
(sensitivity¼87.03% and specificity¼83.78%) compared to 77.03%
for GM only (sensitivity¼74.59% and specificity¼79.46%)and 87.03%
for WM only (sensitivity¼88.65% and specificity¼85.41%). These
results showed that the most important change in the brain occurs
more in the white matter than in the gray matter tissue brain [59].

As shown in these tables, the both methods analyzed in this
work highlight that the combination of features extracted from
GM and WM tissue distributions gives better accuracy, sensitivity
and specificity than using different brain tissues separately. As a
result, combining the different features extracted from both brain
tissues (GMþWM) of patients with classification methods pro-
duces a valid approach to perform a CAD system for AD.

The accuracy of the different approaches depends on the size of
the feature vector. For PLS and PCA based algorithm, the maximum
size of the feature vectors is the number of images which are in
database minus two. However, this number may be reduced by
selecting only the most important components. Fig. 4 shows the
accuracy rates of the different groups achieved with both
approaches in function of number of components selected (num-
ber of components¼8).

4. Discussion

As shown in Section 3, the both methods analyzed in this paper
are valid approaches to develop CAD system for AD. Besides, they
achieve good values of accuracy, sensitivity and specificity. Fig. 4
compares the classification performance of the PLS and PCA
feature extraction methods with linear SVM classifier. Note that,
the performance of the CAD system improves with the number of
PCA or PLS components used as input features for classifica-
tion which up to a maximum stable value. PLS outperforms
PCA as a feature extraction technique yielding peak values of
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sensitivity¼91.27%, specificity¼85.11% and accuracy¼88.49%
when compared to PCA that just yields sensitivity¼89.96%,
specificity¼85.11% and accuracy¼87.77% (see Fig. 4(a) and (b)).
The successful rate of PLS based method reached 88.49% for group
1. However, it is decreased for group 2 and 3 (78.92% ,85.4%
respectively) when MCI images are included (see Fig. 4(c) and (d)).
This is probably due to the high variability of the MCI pattern of
each image. As a consequence, the classification task becomes
more difficult (see Fig. 5).

As shown in Fig. 4(c) and (d), the classification result using only
WM brain tissue is better than using only GM. This result confirms
the previous study [57] in which the modification in the pattern of

brain atrophy in early study (MCI) of disease occurs in the white
matter tissue. Besides, elder subjects are likely to have WM
structural abnormalities caused by leucoaraiosis or other diseases
[58]. This abnormality in the WM brain tissue for patients with AD
or MCI can make the structure very different from normal controls.
Thus, the classification result in the WM can be better than in GM
of brain images. Furthermore, the classification results for group 3
(see 4(e) and 4(f)) confirm that neurodegeneration starts in the
WM and spreads to GM with the progression of the disorder.

It is worth noting that CAD systems are reproducing current
medical knowledge since they have been trained with samples
labeled by physicians. For this reason, statistical measures reported
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in this paper are an estimation about how a trained system is able
to reproduce a medical diagnosis performed by experts [60]. Thus,
some possible errors in the labeling process can modify the decision
hyperplanes of the classifiers, specifically considering that the labels
were assigned based on the scores obtained by patients in cognitive
tests (as MMSE and CDR). In this work, we have previously shown
that combining features extracted from GM and WM segmentation
gives good classification accuracy using PLS and PCA methods. In
addition, the PLS based method yields better classification results
with smaller computational time than the PCA approach. The
feature extraction approaches proposed in this paper achieve good
classification performance when a linear SVM classifier is used.
Furthermore, non-linear classifiers like RBF require more samples
or smaller feature vectors than linear classifier in order to give
good classification results. A more interesting approach consists of
selecting only some components of feature extraction methods,
such as FDR as it is described in [36] and the Out-Of-Bag (OOB)
error in [61]. These previous methods achieve that using the first
PCA/PLS components is optimal for classification purposes. In the
development of our CAD system, we have selected only the 8 first
PLS and PCA components. A higher number of components may
worsen the classification results since it increases the input space.
In order to evaluate our CAD system, we use the receiver opera-
ting characteristic (ROC) curves. Fig. 6 contains the sensitivity and
1-specificity values of the classification results in the ROC space
considering the PLS and PCA techniques.

These plots show a trade-off between the specificity and
sensitivity of the CAD system when varying any of the input
parameters. In addition, the closer to the left upper corner values
are the better [62] (the combination of brain tissues, i.e. GMþWM).

5. Conclusion

A computer aided diagnosis system (CAD) for assisting the early
detection of the Alzheimer's disease was shown in this paper. The
system was developed by combining the different brain tissues
and exploiting the two features extraction methods (PLS and PCA)
in order to improve the classification of MRI images and to
diagnose Alzheimer disease. The both multivariate approaches
used in our proposed methodology allow the dimensionality
reduction of the feature vector in order to surmount the small
sample size problem. The difficulty arises in classification pro-
blems when the dimension of the feature vector is very high
compared to the number of available samples. The PLS based
method uses score vectors as features and performs with the PCA
method an initial reduction of the input space by applying a binary
mask according an intensity threshold that discard low intensity
voxels. Both methods are tested with two classifiers (linear and
RBF kernel) based on SVM. The resulting CAD systemwas based on
segmented MRI images classification from the ADNI database. It
was estimated using a k-fold cross-validation methodology. The
PLS method reached peak accuracy rate when we distinguish
between controls and AD classes. In general, it outperforms several
methods such as PCA approach.
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